NIH PAR-22-265 : 2023 Jointly Sponsored Ruth L. Kirschstein National Research Service Award Institutional Predoctoral Training Program in the Neurosciences (T32 Clinical Trial Not Allowed)

Research Category

Funding Type

Internal Deadline

Wednesday, November 22, 2023

Notes

Submit ticket request  // Limit: 1 // Tickets Available: 1 

 

This Funding Opportunity Announcement (FOA) is a program within the NIH Blueprint for Neuroscience Research in conjunction with the National Institute of General Medical Sciences (NIGMS) and the National Institute on Deafness and other Communication Disorders (NIDCD).

Program Objective

The purpose of the Jointly Sponsored Predoctoral Training Program in the Neurosciences (JSPTPN) program is to provide strong, broad-based neuroscience training that will  develop a cohort of well-trained   researchers at a time when the field is advancing at a rapid pace. Neuroscience research increasingly requires investigators who can cross boundaries, draw on knowledge and interdisciplinary approaches and levels of analysis, and apply this breadth of knowledge in original ways to yield new discoveries about the function of the nervous system.

Broad-based research training. The JSPTPN supports programs of broad-based education and research experience during the first two years of graduate training. As such, training programs supported by a JSPTPN training grant must have a comprehensive, two-year training plan. During this training period, students should obtain a working knowledge of the different kinds of approaches and techniques that make up the field of neuroscience. A key component of this training should be acquiring a strong foundation of experimental methodology (e.g. experimental design, quantitative data analysis and interpretation) and a robust development of professional skills (e.g. written and oral communication and data presentation).

Core Knowledge Expectations. JSPTPN Programs should define the core knowledge that each student is expected to gain. Programs must have a clear comprehensive plan that will ensure that each student will have the tools and research experience necessary for a future career as an independent investigator in areas directly related to biomedical research in neuroscience. Each program is expected to define the core knowledge and research experience expected of all trainees. However, programs may provide a specific tailored curricula based on individual trainee background and needs.

Trainees are expected to participate in a curriculum that incorporates education in multiple levels of analysis, which may include genetics, molecular, cellular, system, behavioral and/or computational approaches. Trainees should also gain an understanding of the tools, technologies, and methods used in contemporary neuroscience research. Note that not all programs will necessarily need to cover all levels of analysis and types of technologies. However, there must be enough coverage to be considered adequate for a broad understanding of neurobiological function and the current tools used for research in neuroscience. Breadth may be achieved through any combination of formal courses, laboratory rotations, workshops and other programmatic activities. Regardless of their individual curricular plans, all students are expected to gain a general understanding of the neurobiological basis underlying diseases and disorders of the nervous system. Trainees are expected to leave the JSPTPN programs with the fundamental knowledge and skills that will allow them to lead, and confidently adapt to the rapidly growing and technologically changing field of neuroscience research.

Laboratory Rotations. Programs are expected to include laboratory rotations that allow students to explore different research areas, scientific approaches, and laboratory cultures. Rotations should have specific purpose and goals and should be designed to provide trainees with a practical understanding of the tools and experimental approaches that drive the research in the rotation laboratory. Rotations should be of sufficient duration to generate a product that results from the scientific and technological knowledge gained in the rotation laboratory.

Experimental design and statistical methodology

Experimental Design. Programs are expected to provide formal instruction in the principles of rigorous experimental design to ensure that trainees understand the practices required for robust and unbiased experimental design, hypothesis testing and the application of these principles and practices to their individual research.

Statistical Methodology. Programs should equip students with a solid understanding of statistical methodology relevant to contemporary neuroscience research and provide exposure to quantitative approaches used for a variety of experimental systems. The goals of this training are to educate trainees in 1) the importance of considering statistical principles in the design of their research, 2) the need for appropriate use of statistics in analyzing data, interpreting results and forming conclusions and 3) the practical application of statistics to date in different experimental paradigms.

Ideally, trainees will begin to develop a depth and breadth of statistical understanding that will enable them to adapt and appropriately apply statistical approaches as their experimental repertoire changes. Programs must ensure that all trainees have a solid understanding of the value and proper use of statistics, including an understanding of the many types of scientific failures that can occur due to inappropriate application of statistical tests. An introductory course in statistics is not sufficient to achieve these goals.

Quantitative Literacy and the Use of Quantitative Approaches

Quantitative Literacy. JSPTPN programs are expected to provide the background necessary for the development of quantitative skills and literacy needed to conduct rigorous research. Programmatic activities should instill an appreciation of the benefits of quantitative approaches to experimentation (and the potential pitfalls associated with a lack of quantitative consideration of their scientific system). An important specific goal of these programs is to foster the incorporation of quantitative thinking into the trainees’ research experience throughout their careers. To that end, the training activities provided by the program should equip trainees with the tools and knowledge required to examine their experimental systems quantitatively.

Quantitative Tools and Approaches. Programs are expected to provide experience in the use of practical tools for quantitative exploration, interpretation, and evaluation of biological data relevant to neuroscience research. Training in quantitative tools and approaches should be integrated into the program and reinforced during the students’ graduate careers. Ideally, training will be ongoing and progressive, with proactive approaches in place to encourage the application of quantitative thinking in the trainees’ dissertation research. For example, a program may wish to cover general principles early in the training and incorporate quantitative approaches that are directly applicable to each trainee’s research topic as they advance.

Scientific rigor. Trainees should have a thorough understanding of the principles and practices of rigorous scientific research. These principles should be examined in the context of the collection, appropriate analysis and interpretation of scientific data. Programs are also encouraged to provide education in human decision-making tendencies and cognitive biases, and how they can lead to erroneous interpretation of data (c.f. Kahneman, D. 2011. Thinking, Fast and Slow. New York. Farrar, Straus and Giroux).

Professional Skills. Regardless of career choice, an individual’s impact and success in science depends heavily on the ability to clearly articulate ideas and results in a variety of settings and to a variety of audiences. Programs are expected to provide students with strong training in professional skills such as written and oral communication. Programs should also provide training in the skills necessary for grant applications, such as grant writing, understanding the grant submission and review process, as well as understanding and addressing critiques. When appropriate, programs should encourage students to apply for individual support, such as fellowships and other individual awards from federal and non-federal sources. 

Understanding Career Opportunities.  Training programs should provide trainees access to structured career development advising and learning opportunities (e.g., workshops, discussions, and exposure to invited speakers from various career paths). Through such opportunities, trainees should obtain a general working knowledge of a variety of potential career options that would allow them to use the skills learned during their training, as well as the steps required to successfully transition to the next stage of their chosen career path.

Oversight of trainee mentoring and progression. In addition to outstanding scientific training, solid mentoring and regular career guidance are critical for advancement and success of science. Consequently, graduate programs supported by the JSPTPN are expected to have a formal oversight plan to ensure that students who obtain a Ph.D. degree do so in a timely manner, and with 1) a publication record that will allow them to progress to outstanding research opportunities, 2) written and oral presentation skills that facilitate their ability to publish their results, submit competitive grant applications , speak at national meetings to present their results, and interview for future positions, 3) an understanding of the many career opportunities available to them as Ph.D. scientists and what is required for them to compete for these different career opportunities.

This wide range of skills and knowledge needed for success in a scientific endeavor cannot be gained by students entirely within the first two years of graduate school but can be achieved with ongoing training and mentoring throughout their graduate school careers. The longitudinal oversight process designed to ensure appropriate student progress is a critical aspect of the environment in which the JSPTPN operates. Although the JSPTPN is not responsible for providing guidance beyond graduate year two, a strong JSPTPN program can only exist in an environment that is dedicated to the long-term success of its students.

Enhancing workforce diversity. NIH’s ability to help ensure that the nation remains a global leader in scientific discovery and innovation is dependent upon a pool of highly talented scientists from diverse backgrounds who will help to further NIH's mission.  See, NOT-OD-20-031. The research enterprise will be strongest when it involves individuals from a wide variety of backgrounds, who may bring new and innovative perspectives to solve the mysteries of brain function, identify the mechanisms that underlie disease and disorders and develop novel approaches to clinical treatment. Within the framework of this program’s longstanding commitment to excellence, T32-funded programs play a critical role in training individuals from diverse backgrounds, including those underrepresented in biomedical sciences.  To help address all of these critical needs, JSPTPN programs are expected to recruit students from a wide variety  of backgrounds and foster their successful completion of the graduate program and transition to their next position.

Training programs are expected to implement robust plans to enhance diversity and to promote inclusive research environments (i.e. institutional and departmental environments in which trainees from all backgrounds feel represented and integrated in the community). 

Exposure to a variety of role models. To enhance diversity, it is essential that trainees have exposure and access to a variety of role models.  Programs should actively strive to recruit prospective individuals for  program leadership, participating faculty and mentors, as well as invited speakers with varying backgrounds, perspectives, and experiences.This may include women, senior faculty who have the benefit of long experience, and junior faculty who have more recent experience in transitioning from training to independent positions.

Training Program Evaluation. Is it expected that JSPTPN programs will undergo both internal, as well as external evaluation in order to promote innovation and evolution, as well as to bring attention to any deficiencies that may arise.

Expectations for Training Program Outcomes. Trainees should leave the T32 training program with the appropriate accomplishments and skills to move on to the next step of an independent research (or research related) career pathway. Outcomes expected of training programs include strong trainee publications and other accomplishments appropriate to their training.

Special Note: Consultation with the Chair of the JSPTPN steering committee prior to application preparation is encouraged (see JSPTPN homepage).

Program URL

Sponsor

External Deadline

05/25/2024

Solicitation Type

Open

Year

2023

Subscribe to the UArizona Impact in Action newsletter to receive featured stories and event info to connect you with UArizona's research, innovation, entrepreneurial ventures, and societal impacts.

Subscribe now