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PART 1
History and Motivation
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Camera History Through 1990

Camera Evolution
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For almost 2400 years cameras have measured pretty pictures.
This approach is no longer necessary or desirable.

Storage, Display,
Exploitation, ...

DSRI — Neifeld 8/20/15



A Camera Revolution

Camera History 1995-2015

Dowski and Cathey

report extended depth of feX "

field imager (PSF %, “ %
engineering)

Computational Cameras in 2015

PSF Engineering (EDOF, super-resolution, aberration control, ...)
Compressive 3D (e.g., light-field, x-ray CT and/or ladar)

conventional cubicraw  reconstruction Compressive RF (e.g., radar imaging, tracking, AIT, ...)
Multi-spectral imaging/video
Multi-domain optimization and task-specific variations
Camera Statusin 2015
. Not-an-image
Object Image formation,
R PN P <=
= Exploitation, ...
Not-a-lens [ ="

The revolution: computation can/should be central to image formation
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I\ Philosophical Underpinnings of Compressive Imaging

Images are Redundant

This is true for all modalities and applications.
It is true because the world is highly correlated in space, time, and wavelength.
The world is made of objects ... not pixels.

This Should Make Us Uncomfortable

e Practically — we are spending resources on measuring redundant data.
e Theoretically — we know more than band-limited so we need to “fix” sampling theorem.
e Cybernetically — sometimes an image is never intended for human consumption.
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A Practical Perspective

Measurement is the application of resources toward the
extraction of important information from a physical system

Information Bottleneck

Physical High cost/SWaP easured Physical Low cost/SWaP Measured
World Quantities World Quantities
t Conventional t t Conventional

x 91 Measurement )( x 91 Measurement

Motivational Observations:

Measurement is the only means to extract information from the world.

Measurements have cost (size, weight, power, latency, ...).

The physical world offers more variables than we can afford to measure.

Bottleneck demands careful selection of measurements that convey most useful information.

Important to think of measurement in terms of resource costs
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A Theoretical Perspective

Images are redundant — this is why image compression is so effective
Redundancy can be viewed as sparsity in some transform domain (L of N nonzero coefficients)

Spatial Representation

Wavelet Representation

: b3 * How can measurements on f leverage this knowledge?

* Traditional measurement requires O(N) samples.

* Donoho proved that compressive measurements using
random projections will require only O(L)

X
NxN
_ : MxN
x=Wf = [ K } W
H B BN EEEEN S
g Measurement
matrix ! v !
Reconstruct by solving an inference problem — what is the Z f

best estimate of x given (a) what I’ve measured, (b) the
requirement for sparsity, and (c) anything else I know about
X (e.g., positivity, prior distribution, ...) ?

x = argmin { [x|; + A [g-KW'x]? + yP(x) }

Sparsity Data Regularizer
Agreement

Nyquist was overly pessimistic. Stronger prior knowledge than band-limited is generally available

Measurement cost now scales with information dimension not signal dimension
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The Weighing Problem
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Multiplexed procedure
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Compressive procedure
+ P boxes, S have non-zero weights i-__l -T'I_] |-i1
+  O(S) measurements needed _5 _5 _5
«  SNR = (5/2) SNR,
« Nonlinear inversion required

I-J'

020 034 003 050 006 051 07 OM
T |0z as 0sr 0 052 082 00 084
091 068 070 051 031 035 016 028

|
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Question: What are the optimal combinations?

Answer: It depends upon priors, task, and measurement physics/noise

OO T T OO T ¢
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A

Approach and Benefits

DARPA KECOM

Knowledge Enhanced Compressive Measurement (KECoM) relaxes
the information bottleneck via measurement optimization

Physical Low cost/SWaP Measured
World
Z & KECoM Insights:
X g, 1. Don’t measure what you already know (i.e., via

priors and/or previous measurements)
2. Don’t measure what you don’t need to know (i.e.,
measurements should be task specific)

Applications of Interest:
1. VIS/IR Imaging (e.g., UAV, soldier borne,

and other mobile applications)

2. RFImaging (e.g., sparse arrays, waveform
design, under-sampled ADC.

3. Spectroscopy (e.g., standoff chemical
sensing)

4. SIGINT (e.g., cooperative and
uncooperative communications)

5. LADAR (e.g., remote 3D imaging)

6. X-Ray Imaging/Threat Detection (e.g.,
airport security)

Minimize measurement resources via compressive sensing
Optimize measurement choices using task-specific information
Example EO/IR result shows 30x SNR advantage with 10x fewer
measurements compared with conventional imaging:

- Increase Pd and/or decrease Pfa

- Reduce measurement time/energy

- Reduce deployment and/or operation costs

- Explore complementary measurement modalities

- Improve material specificity and reduce divestiture

The CS/TSI advantage can be “sliced” in a variety of ways depending upon application needs
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PART 2
Reconstructive Imaging (VIS/IR)
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A\ Motivational Observations

1. Why are images typically measured as collections of pixels?
* History = Original consumers were humans who wanted pretty pictures.
* Physics = Image-formation using glass (or a pinhole) is “straightforward.”
» Technology = Previous lack of electronic detection/post-processing.
* Mind Set = If | can’t “see it” then it isn’t there.

2. What is the first thing we do after we measure 100 Mpixel image?
 Use compression to throw away the redundant parts.
» Maybe we can push some compression into the measurement domain.

Decompression,

Storage, Display,

Exploitation
Compression

Object Image

annooono

Lens
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A

Motivational Observations

1. Why are images typically measured as collections of pixels?
* History = Original consumers were humans who wanted pretty pictures.
* Physics = Image-formation using glass (or a pinhole) is “straightforward.”
» Technology = Previous lack of electronic detection/post-processing.
* Mind Set = If | can’t “see it” then it isn’t there.

2. What is the first thing we do after we measure 100 Mpixel image?
 Use compression to throw away the redundant parts.
» Maybe we can push some compression into the measurement domain.

Decompression,

Storage, Display,

Exploitation
Compression

Object Image .

annooono

Can compression be combined with collection?
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Feature-Specific Compressive Imaging

Applications in the MWIR and LWIR can be dominated by the cost of focal planes.

Compressive imaging can substantially reduce FPA costs with little reduction in image quality.

Conventional

Feature-Specific

N - Detector Array

Direct Image

features

¢ Conventional imagers measure a large number (N) of pixels

¢ Compressive imagers measure a small number (M<<N) of features

® Features are simply projections y; =(x -f) fori=1,.... M

® Benefits of projective/compressive measurements include

- increased measurement SNR = improved image fidelity

- more informative measurements = reduced sensor power and bandwidth

- enable task-specific imager deployment = information optimal
¢ Previous feature-specific imaging: Neifeld (2003), Brady (2005), Donoho (2004), Baraniuk/Kelly (2005)

o

PCA, ICA, Wavelets, Fisher, multi-spectral ...

\

~N_—

random projections

DCT, Hadamard, ...
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Example Architectures

Sequential Compressive Imaging Noisy
Measurement

yi:fi.X‘l‘n

Programmable Mask

Q:> O —> I = O&\ " | characteristics

Object = x Imaging Optics Light Collection A single feature is measured in each time step (noise BW ~ M/T)

Optics Photons collected on a single detector (measured signal ~ 1/M)
Unnecessary photons discarded in each time step (1/2)
Reconstruction computed via post-processing

Parallel Compressive Imaging

Fixed Mask Noise = n Noisy

Measurements

Characteristics

Object =X . .
Imaging -Optics
All M features are measured in a single time step (noise BW ~ 1/T)
Photons collected on M << N detectors (measured signal ~ 1/M)
Unnecessary photons discarded in each channel (1/2)
Reconstruction computed via post-processing

Kernels are completely arbitrary beyond physical requirement for positivity and energy conservation
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A

Common Compressive Imaging Tradeoff

* SNR determined by number of object photons

e Fair comparison requires equal numbers of photons

e All feature measurements must share photon budget = |P,,| =1
e Results based on parallel architecture

Reconstruction in AWGN limited system

Throwing too many

e : f

- o : i

;| useful features s \ i
10 il : :

i i i i
0 10 20 30 40 50
Number of features

reconstructed image by PCA features with SNR =10 dB
RMSE = 12.9

R

2 features/block 6 featuresiblock

10 featuresiblock

\DIRECT

i
60 7O

124

14 features/block

250

200

Minimum MSE
3

Q
o

50

Minimum reconstruction MSE

T T T

Bl ; ;
A I — —

R : sl

a——"

MUX better than DIRECT

RMSE =12

2 features/block

i i i I i
50 100 150 200 250 300

Noise Variance

reconstructed image by optimal features with SNR =10 dB

RMSE = 11.8

6 features/block 10 features/block 14 features/block
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E\L Compressive Imaging via PSF Engineering

PSF Engineering for sub-pixel resolution:

Soda Straw

Existing solutions trade field of view and resolution!

Q: How can PSF engineering improve UAV cameras?
A: Provide optics with additional degrees of freedom

# Consider use of extended point spread function ~ N
@ Design 1ssue #1: retain full optical bandwidth \

@ Design issue #2: tradeoff’ SNR for condition number : n 4drh
@ Pseudo-Random Phase masks for extended PSF “ a * ,: .y :

Problem = pixel-limited resolution

impulse-like PSF

Pseudo-Random Phase mask Enhanced Lenslet

extended PSF

PSF Engineering

e

Amplitude

1FT

Modulation Transfer Function

0.8
0.8
0.7
06
0.5
o4
0.3F
o.2r
01

—— PRFEL {A=0.5A,p=10A)
—Lens

— Lens de-focused
— Pixel

q1ooo -800 -600

L
-400 -200 L] 200 400
Spatial frequency [cycles/mim]

600 800 1000
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A PSF Engineered Super-Resolution

<+

Sine Phase mask Enhanced Lenslet ¢( xX) = Z\r: o Sin(a):- x4+ 9:_) au
i=1

@ Pick N=3: yields 12 free parameters for optimization.
@ Optimization Criterion = RMSE
¢ RMSE computer over objects class using LMMSE operator

4
xto g2 10

45" g —SPEL Imager
—PRPEL Imager —PRPEL Imager Observations

¢ Note smaller support of SPEL PSF compared
to PRPEL PSF.

< SPEL PSF has more efficient photon-
distribution.
¢ SPEL PSF also contains sub-pixel structure.

PSF ampiitude
N
L4 @

Capability enabled NOT by
simple image processing ...
but by joint design (MDO).

Joint design of optics and post-processing overcomes pixel-limited resolution
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PART 3
Task-Specific Imaging
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A Image Information Content

[512><512><3><8=6.2Mb] [ 64 x 64 x 1 x 8 = 32Kb ]

21Mb 24 Kb

+ Information content source requires probability density p(r)

[Shannon Entropy: J = —J.p(r) log p(r)d”r]

PROBLEM: In general p(r) is very complex/unknown and high-dimensional
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Task Specific Information Concept

+ Information content is task specific.

/
Detection task:

Probability of presence/absence = V2
\Information content < 1 bit

T Detection and Localization task:

Probability of tank being absent = 2

\Information content < 2 bits

/
~

Probability of occurrence in each region = %

/

Classification task:
Probability of each target the = 2
Information content < 1 bit

~

J

+ How do we quantify the task specific information (TSI)?
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Task Specific Source Encoding

- R

C(X) stochastically
| encodes X and

P produces scene Y

| Virtual source &‘ Encoding ‘Y = C(X) i

\ SCENE /
+ Detection task: presence/absence of target is of interest

+ Virtual source variable X must be binary.

¢ X=1o0r0 implies tank present or absent.

X =1 (Tank present) | 0 (Tank absent)

An image may be viewed as an encoding of task-specific information

DSRI - Neifeld 8/20/15



Task Specific Information Definition

Imaging chain block diagram

1 X = W ( =
[ VATHLE Encoding Y =C%) » Channel Z H(Y)= R
source J L

SCENE IMAGER

+ Imager is characterized by channel H and noise n

+ Definition for Task Specific Information:

(TSI=1(X;R) < J (X))

Mutual information Always bounded
between X and R by the entropy of X

Entropy J(X) 2 maximum task specific information content

TSI = H(R) = H(R| X) = H(X) — H(X|R)

TSI may be discrete (i.e., previous examples) or continuous
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2-Class Detection Problem

+ Detection task: presence/absence of target is of interest
+ Virtual source variable X must be binary.

+ X =1 or 0 implies tank present or absent.

X =1 (Tank present) 0 (Tank absent)
Noisy
Sequential Architecture Measurement
Yi= fi exX+n

Programmable Mask

Q—»O—DI-}O‘\ "

Imaging Optics Light Collection
Optics

e Dual-rail is employed to realize negative quantities
Energy conservation is enforced via the photon count constraint
* Only AWGN is considered in the results to follow
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A\

TSI Comparison Among Compressive Imagers

Binary detection problem (tank present/absent) = 1 bit of TSI.
Include positivity and energy conservation constraints.

Compare various known measurement matrices with conventional imager.
TSI optimization only over photon allocation (e.g., dwell time).

—

GFD Projective Imager

-

CMF Prlojecti\.'fe Imager

o @
@ ©

Task-specific information [bit]
o
(=]

10 125
snr

7.5

: i
25 5

Conventional
Imager

———————

PC Projective
Imager

GFD /]

15 17.5 20 225 2

Fano Inequality

-

l'IS[(X;R)-J(X)ZJ(XU{) < Plog(N-1) + .I(PU)‘

(o o

snr=5 > TS| = 0.10 bit
P =Ppc !
snr=5 > TS| = 0.28 bit
P =Pur !
snr=5-> TSI = 0.69 bit
P =Pcur
snr=5-> TSI =0.79 bit
P =Pgrp

Qnr= 5> TSI = 0.96 bit/

(P.=102 ¢= TS1=0.92 bif

R
TSI1=0.92 bit @ snr =44
P =Ppc
TSI =0.92 bit @ snr=28

P=Pye Q
TSI1=0.92 bit @ snr=21
P=Pcur Q
TSI =0.92 bit @ snr=11

P =Pgrp

{s,l = 0.92 bit @ snr =%/

Even sub-optimal compressive measurement can provide 14.7x SNR

improvement relative to conventional imaging
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TSI Optimal Extension

Binary detection problem (tank present/absent) = 1 bit of TSI.

Include positivity and energy conservation constraints.

Compare various known measurement matrices with conventional imager.

TSI optimization yields fully optimal measurement vectors.

TSI Optimal
0.8

@
~
T

<
[o)]
T

04r

Task Specific Information (bits)
(4]

Measurements N
. GFD Projective:lmager

CMF Projectiveidmager i

PC Projective Imager

B

0 0.5

Information optimal compressive measurement can provide 27.5x SNR

improvement (i.e., to achieve Pe=0.01) relative to conventional imaging

2 25
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A RMSE Benefit of TSI-Optimal Reconstruction

Results for blockwise compressive imaging using 4x4 blocks and measurement SNR = 30dB.

Conservation of energy via photon count constraint.
Correlated designs provide 37% RMSE improvement over uninformed designs at 4x compression
Correlated designs provide >2x compression advantage at RMSE = 4%

4x compression

Image Quality versus Number of Measurements
1 T

SNR = 30dB +Random Design, Indp. Recon
10l 3 ©Random Design, Corr. Recon ‘
@ +<TSI Indp Design, Indp. Recon Random Design
g o =T8I Indp. Design, Corr. Recon. -1 c lated R tructi
5 <-TSI Corr. Design, Corr. Recon. | Correlated Reconstruction
§ 8
o
& _|15% impro )
u— B mg
? rmation
T
w6
2
T 5 Correlated Design
. ' Correlated Reconstruction
26% improvement 1
3 1 2 3 4 5 6 7 8 9

Number of Measurements - M
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PART 4
X-Ray Imaging
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Fixed-Gantry X-Ray Tomography

Airport (and other infrastructure) security relies on x-ray imaging for threat detection
Current systems combine automated cueing with operator-in-the-loop detection

Rotating gantry systems are common

Fixed-gantry systems are emerging due to their improved speed and flexibility.

e 2o O o Orzgr O O Sre ST Orp

-800

600 45 deg
& - &
g 400 £
b1 1 1o &
3 -2 D, E
ﬁ 2 f2o =
g5 93 P21 &
E
E® {04 o 3B
= |9s ba?
E oo Y6 o4 £
(=3 -
= -500 0 500 &
2 100x(10mm{X)x10mm{Z)) detector array

Rotating Gantry

Architecture of interest has ~ (0.5m)3 volume with 25 sources and 2200 detectors
We study this system using thousands of “bags” generated by our stochastic bag generator

Fixed Gantry

Bags may be threats due to shapes and/or materials
Measurement time (i.e., dwell time) is linearly related to photon number for current systems (especially

significant for medical applications)

Non-Threat
Bag Example

Threat Bag

Example

Full Rank Reconstruction
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Compressive Reconstruction

Dictionary Constrained Nonlinear Reconstruction

. The basic idea here is that the sparse transformations are learned from the reconstructed image
itself during reconstruction.
f = arg min HHf —g"3 such that HI)A - l’f”: < o-,"rxf
DA -
D —learned dictionary
A — collection of all dictionary coefficients
a; — dictionary coefficients of patch i
P — reformats the object into a collection of patches (local spatial regions)
o, T — dictionary error, and coefficient sparsity thresholds

O{T

Original

= Solve by alternating nonlinear conjugate gradient and dictionary learning update:
1. Update f from nonlinear conjugate gradient
2. Update D,, and 4,,
a. D,y = KSVD(D,, f,..0)
b. Apyr = OMP(Dypypr, fn, T)
3. Constrain f,to its dictionary representation
4a. frns1 = Pt (Dn+1An+1)
4. |terate

Low dimensional example requires ~ 150 views for perfect linear reconstruction
All results based on 10° photons

Conventional SART Reconstruction Dictionary Prior Reconstruction
30 Views 60 Views 30 Views 60 Views




Threat Detection via Adaptive Tomography

Multi-source x-ray architecture is ideally suited to adaptive measurement
Static design exploits statistical knowledge of objects and task (design-time optimization).
Adaptive design exploits additional knowledge obtained from previous measurements (on-line optimization).
Greedy adaptation maximizes the benefit of the “next” measurement.
Sequential hypothesis testing (SHT) is a established formalism for on-line Bayesian experimental design.

o

. . YES
Non-Threat Objects |:> Measurement Hypothes|s Class Label with
Confidence Guaranteed Average
= Hylf g
‘ g olf] Test Performance P”

T NO
] v

Modify Measurement

Threat Objects

: Pe for 1 bag/class
10? T
- . g @ <
B . - 4 @ 3
2200-dim i
-800 L ~ 280 times 77 ]
g ——_ A
-600 | 45 deg 1 B N o
& 2200-dim L e
5 g S
> = H ——— - 5
> © @ H il —— 33
@ -400 £ e | e SO0 P i
5 5 g 5 M =
E = 2 |~ 20times 13 ti T
= H
g o o § L . S
3 -20 b, 3 - i
= 2 202 2200-d = e
= g -dim e = vy
2.1 21 € | e
o . » 24 e 55-dim 3
S - e
- X R
% 5 3% 9 Non-Adaptive (8l Sources) (55-dm)
E’ E : M M"h E;:—t’l‘?u’;—m:"
— - — Non-Adaptive (55-dim|
£ 20 6 4 g —-&-— Non-Adaplive (2200-8m)
— —— Jdiv({55-d —
‘;D‘, ” 25 % F's:;m&:;:“ £
o ——i— S 2200-d,
S 500 0 500 8 b F.arn‘xlzzw.anu:\]
@ 100x(10mm(X)x10mm(Z)) detector array " T T ) ) M .
102000 2500 2000 3800 4000 4500 5000 5500 6000

MNumber of photons per experiment
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Conclusions

. Computational imaging (i.e., joint design of hardware/algorithms) has emerged from the desire

. Compressive measurement attempts to match the information content of a signal with the

. This perspective is particularly important when

. A task-specific definition of information is a useful tool for analysis/design and enables task-

. Some examples demonstrate the potential benefits of TSI-based design (VIS/IR, X-Ray, RF, ...)

to leverage Moore’s law toward optimizing sensor resources/costs.

sensing resources required to measure that signal.
a. Don’t measure what you already know
b. Don’t measure what you don’t need to know

a. Measurements are expensive
b. Dimensionality mismatch between object and sensor

specific computational imagers to substantially outperform their conventional counterparts.
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